-------

神戸大学 大学院システム情報学研究科 計算科学専攻 陰山 聡


-------
【目次】
#contents
-------


* 前回のレポート(並列化)の解説 [#kc0e3327]
// * 前回のレポート(並列化)の解説 [#kc0e3327]


** 問題設定の復習 [#t00dbb2b]

#ref(problem_thermal.jpg)
- 2次元正方形領域 [0,1]×[0,1] での熱伝導を考える
- 境界をすべて0℃に固定
- 領域全体に一定の熱を加える
- ⇒ このとき,十分な時間が経った後での温度分布はどうなるか?

** 非並列版コードの復習 [#d5317fed]

熱伝導とは注目する一点が、「近所」の温度と等しくなろうという傾向である。
⇒周囲の温度の平均値になろうとする。
熱源があれば、一定の割合で温度が上がろうとする。


ヤコビ法アルゴリズム。
#ref(jacobi_method.jpg)

 do j=1, m
     do i=1, m
         u_new(i,j) = ( u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) ) / 4 + f(i,j)
     end do
 end do

このヤコビ法に基づいたコード heat1.f90を前回の演習で学んだ。

** heat1_wi_comments.f90 (詳細コメント付きバージョン) [#ta5f8f8c]

後の改訂に備えて、まずこのheat1.f90を少し丁寧に復習しよう。

 ! 
 ! heat1_wi_comments.f90
 !
 !-----------------------------------------------------------------------
 ! Time development form of the thermal diffusion equation is
 !    \partial T(x,y,t) / \partial t = \nabla^2 T(x,y,t) + heat_source.
 ! In the stationary state, 
 !    \nabla^2 T(x,y) + heat_source = 0.
 ! The finite difference method with grid spacings dx and dy leads to
 !    (T(i+1,j)-2*T(i,j)+T(i-1,j))/dx^2 
 !  + (T(i,j+1)-2*T(i,j)+T(i,j-1))/dy^2 + heat_source = 0.
 ! When dx=dy=h,
 !    T(i,j) = (T(i+1,j)+T(i-1,j)+T(i,j+1)+T(i,j-1))/4+heat_source*h^2/4.
 ! This suggests a relaxation method called Jacobi method adopted in
 ! this code.
 !-----------------------------------------------------------------------
 
 program heat1_wi_comments
   implicit none
   integer, parameter :: m=31            ! mesh size
   integer            :: nmax=20000      ! max loop counter
   integer :: i,j,n
   integer, parameter :: SP = kind(1.0)
   integer, parameter :: DP = selected_real_kind(2*precision(1.0_SP))
   real(DP), dimension(:,:), allocatable :: u    ! temperature field
   real(DP), dimension(:,:), allocatable :: un   ! work array
   real(DP) :: heat=1.0_DP       ! heat source term; uniform distribution.
   real(DP) :: h                 ! grid size
 
   !                    |<----- 1.0 ----->|
   !               j=m+1+-------u=0-------+  ---
   !               j=m  |                 |   ^
   !                .   |                 |   | 
   !                .   |     uiform      |   | 
   !                   u=0    heat       u=0 1.0   
   ! j-direction    .   |     source      |   | 
   !(y-direction)  j=2  |                 |   | 
   !     ^         j=1  |                 |   v 
   !     |         j=0  +-------u=0-------+  ---
   !     |             i=0 1 2 ...      i=m+1
   !     |
   !     +-------> i-direction (x-direction)
   !
   ! when m = 7, 
   !       |<-------------------- 1.0 -------------------->|
   !       |                                               |
   !       |  h     h     h     h     h     h     h     h  |
   !       |<--->|<--->|<--->|<--->|<--->|<--->|<--->|<--->|
   !       +-----+-----+-----+-----+-----+-----+-----+-----+
   !     i=0     1     2     3     4     5     6     7     8 
   !
   allocate( u(0:m+1,0:m+1) )    ! memory allocation of 2-D array.
                                 ! you can access each element of u
                                 ! as u(i,j), where 0<=i<=m+1 
                                 ! and  0<=j<=m+1.
 
   allocate( un(m,m) )           ! another memory allocation. in
                                 ! this case un(i,j) with
                                 ! 1<=i<=m and 1<=j<=m.
 
   h = 1.0_DP/(m+1)              ! grid spacing.
 
   u(:,:) = 0.0_DP  ! initial temperature is zero all over the square.
 
   do n = 1 , nmax     ! relaxation loop 
     do j = 1 , m      ! in the y-direction
       do i = 1 , m
         un(i,j)=(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1))/4.0_DP+heat*h*h
       end do
     end do                      ! same as the following do-loops:
     u(1:m,1:m) = un(1:m,1:m)    ! do j = 1 , m
                                 !   do i = 1 , m
                                 !     u(i,j) = un(i,j)
                                 !   end do
                                 ! end do
     if ( mod(n,100)==0 ) print *, n, u(m/2+1,m/2+1)  ! temperature at
   end do                                             ! the center
 end program heat1_wi_comments

 
** 再びheat1.f90(コメントなしバージョン) [#x10d0f37]

次に詳しいコメントをはずしてもう一度もとのheat1.f90を見てみる。
(ただし、先週のコードから本質的でないところを少しだけ修正している。)

 program heat1
   implicit none
   integer, parameter :: m=31, nmax=20000
   integer :: i,j,n
   integer, parameter :: SP = kind(1.0)
   integer, parameter :: DP = selected_real_kind(2*precision(1.0_SP))
   real(DP), dimension(:,:), allocatable :: u, un
   real(DP) :: h, heat=1.0_DP
 
   allocate(u(0:m+1,0:m+1))
   allocate(un(m,m))
 
   h=1.0_DP/(m+1)
   u(:,:) = 0.0_DP
 
   do n=1, nmax
     do j=1, m
       do i=1, m
         un(i,j)=(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1))/4.0_DP+heat*h*h
       end do
     end do
     u(1:m,1:m)=un(1:m,1:m)
     if (mod(n,100)==0) print *, n, u(m/2+1,m/2+1)
   end do
 end program heat1



** 先週の課題(演習3-3) [#e4b52e2d]
- heat1.f90 を MPI を用いて並列化せよ
// - 4 または 8 プロセスで実行し,heat1.f90 と出力結果が同じであることを確認せよ
// - 余裕があれば,プロセス数を 1,2,4,8,16 と変えて実行し,計算時間の変化を調べよ。また,加速率を求めよさらに余裕があれば,問題サイズ m を 100,200 と大きくして同様の実験を行い,加速率を調べよ

** 解答例(heat2.f90) [#v581872f]

 program heat2
   use mpi
   implicit none
   integer, parameter :: m=31, nmax=20000
   integer :: i,j,jstart,jend,n
   integer, parameter :: SP = kind(1.0)
   integer, parameter :: DP = selected_real_kind(2*precision(1.0_SP))
   real(DP), dimension(:,:), allocatable :: u, un
   real(DP) :: h, heat=1.0_DP
   integer ::  nprocs,myrank,ierr,left,right
   integer, dimension(MPI_STATUS_SIZE) :: istat
 
   call mpi_init(ierr)
   call mpi_comm_size(MPI_COMM_WORLD,nprocs,ierr)
   call mpi_comm_rank(MPI_COMM_WORLD,myrank,ierr)
 
   h = 1.0_DP/(m+1)
 
   jstart = m*myrank/nprocs+1
   jend   = m*(myrank+1)/nprocs
 
   allocate( u(0:m+1,jstart-1:jend+1))
   allocate(un(    m,  jstart:jend  ))
 
   u(:,:) = 0.0_DP
 
   left = myrank-1
   if ( myrank==0 )        left  = nprocs-1
   right = myrank+1
   if ( myrank==nprocs-1 ) right = 0
 
   do n=1, nmax
     call mpi_sendrecv(u(1,jend),m,MPI_DOUBLE_PRECISION,right,100,       &
                       u(1,jstart-1),m,MPI_DOUBLE_PRECISION,left,100,    &
                       MPI_COMM_WORLD,istat,ierr)
     call mpi_sendrecv(u(1,jstart),m,MPI_DOUBLE_PRECISION,left,100,      &
                       u(1,jend+1),m,MPI_DOUBLE_PRECISION,right,100,     &
                       MPI_COMM_WORLD,istat,ierr)
 
     if (myrank==0)        u(1:m,  0) = 0.0_DP
     if (myrank==nprocs-1) u(1:m,m+1) = 0.0_DP
 
     do j = jstart , jend
       do i = 1 , m
         un(i,j)=(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1))/4.0_DP+heat*h*h
       end do
     end do
     u(1:m,jstart:jend)=un(1:m,jstart:jend)
 
     if (jstart<=m/2+1 .and. jend>=m/2+1) then
       if (mod(n,100)==0) print *, n, u(m/2+1,m/2+1)
     end if
   end do
   call mpi_finalize(ierr)
 end program heat2


** コード解説 (コメント付きソースコード heat2_wi_comments.f90) [#m3d0f5c6]
上のheat2.f90を解説するために詳しいコメントをつけたソースコードheat2_wi_comments.f90を以下に示す。

 program heat2_wi_comments
   use mpi
   implicit none
   integer, parameter :: m=31            ! mesh size
   integer, parameter :: nmax=20000      ! max loop counter
   integer :: i,j,jstart,jend,n
   integer, parameter :: SP = kind(1.0)
   integer, parameter :: DP = selected_real_kind(2*precision(1.0_SP))
   real(DP), dimension(:,:), allocatable :: u  ! temperature field
   real(DP), dimension(:,:), allocatable :: un ! work array
   real(DP) :: heat=1.0_DP   ! heat source term. uniform distribution.
   real(DP) :: h             ! grid spacing; dx=dy=h
   integer  :: nprocs        ! number of MPI processes
   integer  :: myrank        ! my rank number
   integer  :: left, right   ! nearest neighbor processes
   integer, dimension(MPI_STATUS_SIZE) :: istat ! used for MPI
   integer  :: ierr          ! used for mpi routines
 
   call mpi_init(ierr)
   call mpi_comm_size(MPI_COMM_WORLD,nprocs,ierr)
   call mpi_comm_rank(MPI_COMM_WORLD,myrank,ierr)
 
   h = 1.0_DP/(m+1)          ! grid spacings. see the comment fig below.
 
   jstart = m*myrank/nprocs+1   ! the process is in charge of this point
   jend   = m*(myrank+1)/nprocs ! point to this point. see the fig below.
 
 !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 !
 ! when m = 7, nprocs = 3
 ! 
 !     |<-------------------- 1.0 -------------------->|      
 !     |                                               |
 !     |  h  |  h     h     h     h     h     h     h  |
 !     |<--->|<--->|<--->|<--->|<--->|<--->|<--->|<--->|
 !     |     |     |     |     |     |     |     |     |
 !     +-----+-----+-----+-----+-----+-----+-----+-----+
 !   j=0     1     2     3     4     5     6     7     8
 !     +-----+-----+-----+-----+-----+-----+-----+-----+
 !     |  jstart   |     |           |     |     |     | 
 !     |     |   jend    |           |   jstart  |     | 
 !     o-----rank=0------o           |     |    jend   |
 !                 |     |           |     |     |     |
 !                 |   jstart      jend    |     |     |
 !                 |     |           |     |     |     |
 !                 o------- rank=1---------o     |     |
 !                                   |     |     |     | 
 !                                   o------rank=2-----o
 !
 !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 !
 ! Another example, when m=17, nprocs=6
 !
 !  j=0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 !    +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 !    |        |        |     |           |        |        |
 !    o==rank0=o        |     o===rank3===o        |        |
 !          |           |        |     |           |        |
 !          o===rank1===o        |     o===rank4===o        |
 !                   |           |              |           |
 !                   o===rank2===o              o===rank5===o
 ! each process      |           |
 ! has 2D array  u[i,jstart-1:jend+1] 
 !
 !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
   allocate( u(0:m+1,jstart-1:jend+1)) ! 2-D array for temperature.
   allocate(un(m,jstart:jend))         ! 2-D work array.
   u(:,:) = 0.0_DP
 
   left  = myrank-1  ! left neighbor.
   if (myrank==0)        left = nprocs-1  ! a dummy periodic distribution
   right = myrank+1  ! right neighbor.    ! for code simplicity. this has
   if (myrank==nprocs-1) right = 0        ! actually no effect.
 
   do n = 1 , nmax   ! main loop for the relaxation, to equilibrium.
     !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     !
     !                  jend                          jstart      
     !   <(left)>        |                              |    <(right)>
     !      - --o--o--o--o--o                        o--o--o--o--o-- -
     !              send |  ^ recv                   ^  |
     !                   |  |                        |  |
     !                 [2]  [3]                    [1]  [4]
     !                   |  |                        |  |
     !              recv v  | send                   |  v
     !                   o--o--o--o-- - - --o--o--o--o--o
     !                      |                        |
     !                    jstart                    jend
     !                               <(myself)>
     !                     
     !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     call mpi_sendrecv(u(1,jend),    m,MPI_DOUBLE_PRECISION,right,100,  & ! [1]
                       u(1,jstart-1),m,MPI_DOUBLE_PRECISION,left,100,   & ! [2]
                       MPI_COMM_WORLD,istat,ierr)
     call mpi_sendrecv(u(1,jstart),m,MPI_DOUBLE_PRECISION,left, 100,    & ! [3]
                       u(1,jend+1),m,MPI_DOUBLE_PRECISION,right,100,    & ! [4]
                       MPI_COMM_WORLD,istat,ierr)
 
     if (myrank==0)        u(1:m,0  ) = 0.0_DP   ! to keep the boundary 
     if (myrank==nprocs-1) u(1:m,m+1) = 0.0_DP   ! condition (temp=0).
 
     do j = jstart , jend   ! Jacobi method. 
       do i = 1 , m         ! no need to calculate the boundary i=0 and m+1.
         un(i,j)=(u(i-1,j)+u(i+1,j)+u(i,j-1)+u(i,j+1))/4.0_DP+heat*h*h
       end do
     end do
     u(1:m,jstart:jend)=un(1:m,jstart:jend) ! this is actually doubled do-loops.
 
     if (jstart<=m/2+1 .and. jend>=m/2+1) then         ! print out the temperature
       if (mod(n,100)==0) print *, n, u(m/2+1,m/2+1)   ! at the central grid point.
     end if
   end do
 
   deallocate(un,u)        ! or you can call deallocate for two times for un and u.
   call mpi_finalize(ierr)    
 end program heat2_wi_comments



* MPI通信の確認 [#f9e4f872]

前回の演習で説明されたMPI_SENDRECVの挙動を改めて確認しよう。
そのためのソースコード(heat2_sendrecv_check.f90)を以下に用意した。
これは上記のheat2.f90からヤコビ法による熱伝導問題の解法部分を除き、
MPIの通信に関係する部分だけを抜き出したものである。
 !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 !
 ! when m = 7, nprocs = 3
 ! 
 !     |<-------------------- 1.0 -------------------->|      
 !     |                                               |
 !     |  h  |  h     h     h     h     h     h     h  |
 !     |<--->|<--->|<--->|<--->|<--->|<--->|<--->|<--->|
 !     |     |     |     |     |     |     |     |     |
 !     +-----+-----+-----+-----+-----+-----+-----+-----+
 !   j=0     1     2     3     4     5     6     7     8
 !     +-----+-----+-----+-----+-----+-----+-----+-----+
 !     |  jstart   |     |           |     |     |     | 
 !     |     |   jend    |           |   jstart  |     | 
 !     o==== rank=0 =====o           |     |    jend   |
 !                 |     |           |     |     |     |
 !                 |   jstart      jend    |     |     |
 !                 |     |           |     |     |     |
 !                 o======= rank=1 ========o     |     |
 !                                   |     |     |     | 
 !                                   o===== rank=2 ====o
 !
 !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 !
 ! Another example, when m=17, nprocs=6
 !
 !  j=0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18
 !    +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 !    |        |        |     |           |        |        |
 !    o==rank0=o        |     o===rank3===o        |        |
 !          |           |        |     |           |        |
 !          o===rank1===o        |     o===rank4===o        |
 !                   |           |              |           |
 !                   o===rank2===o              o===rank5===o
 ! each process      |           |
 ! has 2D array  u[i,jstart-1:jend+1] 
 !
 !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 !  
 program heat2_sendrecv_check
   use mpi
   implicit none
   integer, parameter :: m=17
   integer :: i,j,jstart,jend,n
   integer, parameter :: SP = kind(1.0)
   integer, parameter :: DP = selected_real_kind(2*precision(1.0_SP))
   real(DP), dimension(:,:), allocatable :: u, un
   integer ::  nprocs,myrank,ierr,left,right
   integer, dimension(MPI_STATUS_SIZE) :: istat
 
   call mpi_init(ierr)
   call mpi_comm_size(MPI_COMM_WORLD,nprocs,ierr)
   call mpi_comm_rank(MPI_COMM_WORLD,myrank,ierr)
 
   jstart = m*myrank/nprocs+1
   jend   = m*(myrank+1)/nprocs
 
   allocate( u(0:m+1,jstart-1:jend+1))
   allocate(un(    m,  jstart:jend  ))
 
   u(:,jstart-1:jend+1) = myrank
 
   call print('before',myrank, jstart, jend, u(m/2+1,:))
 
   left = myrank-1
   if ( myrank==0 )        left  = nprocs-1
   right = myrank+1
   if ( myrank==nprocs-1 ) right = 0
 
   !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   !
   !                  jend                          jstart      
   !   <(left)>        |                              |    <(right)>
   !      - --o--o--o--o--o                        o--o--o--o--o-- -
   !              send |  ^ recv                   ^  |
   !                   |  |                        |  |
   !                 [2]  [3]                    [1]  [4]
   !                   |  |                        |  |        
   !                   |  |                        |  |
   !              recv v  | send                   |  v
   !                   o--o--o--o-- - - --o--o--o--o--o
   !                      |                        |
   !                    jstart                    jend
   !                               <(myself)>
   !                     
   !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
   call mpi_sendrecv(u(1,jend),    m,MPI_DOUBLE_PRECISION,right,100,   & ! [1]
                     u(1,jstart-1),m,MPI_DOUBLE_PRECISION, left,100,   & ! [2]
                     MPI_COMM_WORLD,istat,ierr)
   call mpi_sendrecv(u(1,jstart),m,MPI_DOUBLE_PRECISION, left,100,     & ! [3]
                     u(1,jend+1),m,MPI_DOUBLE_PRECISION,right,100,     & ! [4]
                     MPI_COMM_WORLD,istat,ierr)
 
 !   if (myrank==0)        u(1:m,  0) = 0.0_DP
 !   if (myrank==nprocs-1) u(1:m,m+1) = 0.0_DP
 
   call print(' after', myrank, jstart, jend, u(m/2+1,:))
 
   deallocate(u,un)
   call mpi_finalize(ierr)
 
 contains
 
   subroutine print(message,myrank,jstart,jend,u)
     character(len=*), intent(in)                     :: message
     integer,          intent(in)                     :: myrank
     integer,          intent(in)                     :: jstart
     integer,          intent(in)                     :: jend
     real(DP), dimension(jstart-1:jend+1), intent(in) :: u
 
     integer, dimension(0:m+1) :: iu          ! work array of integer
     integer                   :: rank, ierr
     character(len=100)        :: line        ! printed line on stdout
     character(len=20)         :: format      ! print format
     
     iu(:) = -1    ! initialization of the work integer array.
     iu(jstart-1:jend+1) = u(jstart-1:jend+1) ! copy the data (double to int).
 
     write(format,'(i3"(i3)")') m+2     ! format	string generator. 
     write(line,format) (iu(i),i=0,m+1) ! integers to a text line.
 
     do rank = 0 , nprocs-1                   ! to avoid random printing
        call mpi_barrier(MPI_COMM_WORLD,ierr) ! by each process in random order,
        if ( rank==myrank ) then              ! we here put the loop and barrier.
           print *, message//':'//trim(line)
        end if
     end do
   end subroutine print
 
 end program heat2_sendrecv_check


** ジョブスクリプト [#s97db981]

このコード(heat2_sendrecv_check.f90)をscalarに投入するためのジョブスクリプトを
以下のように設定すると、heat2_sendrecv_check.f90のコメントに書いた例と同じ、
プロセス数が6のジョブを投入できる。

 #PBS -l cputim_job=00:05:00
 #PBS -l memsz_job=2gb
 #PBS -l cpunum_job=1
 #PBS -T vltmpi
 #PBS -b 6
 #PBS -q PCL-A
 
 cd /home/users/yourID/YourDirectory
 mpirun_rsh -np 6 ${NQSII_MPIOPTS} ./a.out

*  &color(#0000ff){【演習】}; [#b33862b1]
heat2_sendrecv_check.f90をmpif90コマンドでコンパイルし、
上記ジョブスクリプトを heat2_sendrecv_check.jsという名前のファイルに保存した上で、
 qsub heat2_sendrecv_check.js
としてジョブを投入せよ。

(2) MPIプロセス数やグリッドサイズmを変えて試せ。

** 結果例 [#y9842a4a]
 
 %NQSII(INFO): ------- Output from job:0000 -------
 [0]  before:  0  0  0  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [0]   after:  5  0  0  1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 %NQSII(INFO): ------- Output from job:0001 -------
 [1]  before: -1 -1  1  1  1  1  1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [1]   after: -1 -1  0  1  1  1  2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 %NQSII(INFO): ------- Output from job:0002 -------
 [2]  before: -1 -1 -1 -1 -1  2  2  2  2  2 -1 -1 -1 -1 -1 -1 -1 -1 -1
 [2]   after: -1 -1 -1 -1 -1  1  2  2  2  3 -1 -1 -1 -1 -1 -1 -1 -1 -1
 %NQSII(INFO): ------- Output from job:0003 -------
 [3]  before: -1 -1 -1 -1 -1 -1 -1 -1  3  3  3  3  3 -1 -1 -1 -1 -1 -1
 [3]   after: -1 -1 -1 -1 -1 -1 -1 -1  2  3  3  3  4 -1 -1 -1 -1 -1 -1
 %NQSII(INFO): ------- Output from job:0004 -------
 [4]  before: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  4  4  4  4  4 -1 -1 -1
 [4]   after: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  3  4  4  4  5 -1 -1 -1
 %NQSII(INFO): ------- Output from job:0005 -------
 [5]  before: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  5  5  5  5  5
 [5]   after: -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  4  5  5  5  0



------------------------------

as of &_now; (&counter;)