What is the Peak Temperature of a Square?

-When it is uniformly heated with fixed temperature on the border-

Akira Kageyama
 Graduate School of System Informatics, Kobe University, Japan

$$
2010.12 .04 \text { (revised) }
$$

Problem: A function $T(x, y)$ satisfies a Poisson's equation:

$$
\begin{equation*}
\nabla^{2} T(x, y)=\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+4=0 \tag{1}
\end{equation*}
$$

for $|x| \leq 1 / 2$ and $|y| \leq 1 / 2$ with the boudary conditions

$$
\begin{equation*}
T\left(x, y= \pm \frac{1}{2}\right)=T\left(x= \pm \frac{1}{2}, y\right)=0 \tag{2}
\end{equation*}
$$

Calculate the value $T(0,0)$.

Solution: The symmetries between x and y as well as x and $-x$ of the problem suggenst the following form of $T(x, y)$;

$$
\begin{equation*}
T(x, y)=-\left(x^{2}+y^{2}\right)+a_{0}+\sum_{n=1}^{\infty} a_{n}(\cos n \pi x \cosh n \pi y+\cosh n \pi x \cos n \pi y) . \tag{3}
\end{equation*}
$$

We can confirm that $T(x, y)$ certainly satisfies eq. (1).
The peak temperature at the origin $T(0,0)$ is given by

$$
\begin{equation*}
T(0,0)=a_{0}+2 \sum_{n=1}^{\infty} a_{n} \tag{4}
\end{equation*}
$$

and the coefficients $a_{j}(j=0,1,2, \cdots)$ are to be determined from the boundary conditions, eqs. (2). The symmetries again enable us to consider only one of the four conditions, say,

$$
\begin{equation*}
T\left(x, y=\frac{1}{2}\right)=-x^{2}-\frac{1}{4}+a_{0}+\sum_{n=1}^{\infty} a_{n}\left(\cos n \pi x \cosh \frac{n \pi}{2}+\cosh n \pi x \cos \frac{n \pi}{2}\right) . \tag{5}
\end{equation*}
$$

The factor $\cosh n \pi / 2$ in the right-hand-side of eq. (5) exponentially increases for large n, if $(x, y) \neq$ $(0,0)$. It means that the coefficient a_{n} exponentially decays. Therefore, we can expect that a small number of truncation of a_{j} with, say $j \leq 2$, gives fairly a good approximation of $T(0,0)$. We set

$$
\begin{equation*}
T\left(x, y=\frac{1}{2}\right) \approx T^{(2)}(x) \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
T^{(2)}(x)= & -x^{2}-\frac{1}{4}+a_{0} \\
& +\sum_{n=1}^{2} a_{n}\left(\cos n \pi x \cosh \frac{n \pi}{2}+\cosh n \pi x \cos \frac{n \pi}{2}\right) \tag{7}\\
= & -x^{2}-\frac{1}{4}+a_{0} \\
& +a_{1}\left(\cos \pi x \cosh \frac{\pi}{2}+\cosh \pi x \cos \frac{\pi}{2}\right) \\
& +a_{2}(\cos 2 \pi x \cosh \pi+\cosh 2 \pi x \cos \pi) \\
= & -x^{2}-\frac{1}{4}+a_{0}+a_{1} \cosh \frac{\pi}{2} \cos \pi x \\
& +a_{2}(\cos 2 \pi x \cosh \pi-\cosh 2 \pi x) \tag{8}
\end{align*}
$$

To fix a_{0}, a_{1} and a_{2}, we impose three boundary conditions at $x=0,1 / 3$, and $1 / 2$ on this $y=1 / 2$ line.

$$
\begin{align*}
T^{(2)}(0) & =-\frac{1}{4}+a_{0}+a_{1} \cosh \frac{\pi}{2}+a_{2}(\cosh \pi-1)=0 \tag{9}\\
T^{(2)}\left(\frac{1}{2}\right) & =-\frac{1}{4}-\frac{1}{4}+a_{0}-2 a_{2} \cosh \pi \tag{10}\\
T^{(2)}(1 / 3) & =-\frac{1}{9}-1+a_{0}+\frac{a_{1}}{2} \cosh \frac{\pi}{2}+a_{2}\left(-\frac{1}{2} \cosh \pi-\cosh \frac{2 \pi}{3}\right)=0 \tag{11}
\end{align*}
$$

The linear equations (9) to (10) are easily solved as

$$
\begin{align*}
& a_{2}=-\frac{1 / 36}{2 \cosh \frac{2 \pi}{3}-1} \tag{12}\\
& a_{0}=\frac{1}{2}+2 a_{2} \cosh \pi \tag{13}\\
& a_{1}=\frac{1}{4}-a_{0}-a_{2}(\cosh \pi-1) / \cosh (\pi / 2) \tag{14}
\end{align*}
$$

that are numerically calculated:

$$
\begin{align*}
& a_{0}=0.5889048254279103 \tag{15}\\
& a_{1}=-0.15125367793243916 \tag{16}\\
& a_{2}=0.0038347646559121653 \tag{17}
\end{align*}
$$

Note the expected rapid decay of a_{j}.
Taking n to 2 in the summation of eq. (4), we get

$$
\begin{equation*}
T(0,0) \approx 0.2940669988748564 \tag{19}
\end{equation*}
$$

