データ可視化

担当:坂本尚久 計算科学演習A1 2016年4月28日

※本資料は昨年の陰山先生の資料に坂本が加筆したものです。

1. 可視化とは

- 1次元データの可視化
- 2次元データの可視化
- 3次元データの可視化
- 2. gnuplot入門
 - X Windowシステムの設定
 - -演習1~4
- 3. 課題

可視化

• 情報可視化

- Information Visualization

・データ可視化・科学的可視化

Data Visualization

- Scientific Visualization
- 視覚的分析
 - Visual Analytics

可視化

• 情報可視化

- Information Visualization

・データ可視化・科学的可視化

Data Visualization

- Scientific Visualization
- 視覚的分析
 - Visual Analytics

• xの関数f(x) $-f(x) = \sin x$

計測データ
- 23, 19, 18, 20, 23, 24
- 16, 15, 11, 10, 14, 15

1次元データの可視化

• $f(x) = \sin x$ に対する $f^{\times 10}(x)$ はどのような関数であろうか?

-ただし、

$$y = f(x)$$

に対して、fの値域が定義域に含まれるとき、 $f^{\times 2} := f((f(x)), f^{\times 3} := f(f(f(x))), \cdots$ 等と定義する。

$y = \sin(\sin(\sin(\sin(\sin(\sin(\sin(\sin(x)))))))))))$

クイズ

• $x \in 0$ 以上の実数として、 $x \in x$ のx乗、つまり $f(x) = x^x \quad (x \ge 0)$

はどんな関数であろうか?

- 最大値/最小値をとるxは? - x = 0の時の値 $f(0) = 0^0$ は何だろう?

- xとyの関数 f(x,y)
- 数値データ

- xとyの関数 f(x,y)
- 数値データ

- xとyの関数f(x,y)
- 数値データ

例)天気図(気圧配置図)
 – 地表面での大気の圧力pの分布p(x,y)の等高線

• 等高線

- 指定された値 S を持つ点の集合

• 等高線

• 等高線

• 等高線

• 等高線

• 等高線

• 等高線

- Marching Squares
 - 稜線との交差パターン(24=16 通り)

0000 = 0	-1	-1	-1	-1
0001 = 1	0	3	-1	-1
0010 = 2	0	1	-1	-1
0011 = 3	3	1	-1	-1
0100 = 4	1	2	-1	-1
0101 = 5	1	0	3	2
0110 = 6	2	0	-1	-1
0111 = 7	3	2	-1	-1
1000 = 8	2	3	-1	-1
1001 = 9	0	2	-1	-1
1010 = 10	1	2	0	3
1011 = 11	1	2	-1	-1
1100 = 12	1	3	-1	-1
1101 = 13	0	1	-1	-1
1110 = 14	0	3	-1	-1
1111 = 15	-1	-1	-1	-1

- *x,yとz*の関数*f*(*x,y,z*)
- 数値データ

• 等值面

– Marching Cubes

- 断面
 - Slice Plane

3次元データの可視化

• ボリュームレンダリング

Direct Volume Rendering

可視化ソフトウェア

- 様々な可視化アルゴリズムを実装した便利な
 ソフトウェアが多数開発されている。
 - 市販可視化ソフト
 - IDL, AVS/Express, Tecplot, ...
 - 無料可視化ソフト
 - ParaView, Vislt, Amira, Vapor, ...
 - 数式処理ソフトの可視化機能
 - Mathematica, MATLAB, ...
 - 基本ライブラリ
 - VTK, Visualization Library, ...

gnuplot入門

・この演習では、gnuplotを利用する。

– http://www.gnuplot.info

- 「ニュープロット」しばしば「グニュープロット」

- GNUプロジェクトとは無関係

gnuplotとは

• gnuplot FAQより

http://www.gnuplot.info/faq/faq.html

- a command-driven interactive plotting program
- both 2- and 3-dimensional plots
- designed primarily for the visual display of scientific data
- gnuplot is copyrighted, but freely distributable
- you don't have to pay for it
- gnuplot is neither written nor maintained by the FSF

演習室の環境設定

- π-computer(のログインノード)にインストールされて
 いるgnuplotを使う。
- グラフは(Unixの)X-Windowシステム(X11)
- 端末の(マイクロソフトの)Winodwsシステムで、X11
 のクライアントを立ち上げる。
- デフォルトでは外部のX11アプリケーションを拒否する設定なので、それを変更する必要がある。

演習室での設定手順

- 各端末で
 - 1. **すべてのプログラム→**Xming→Xming ※特に何も起きない。
 - 2. Tera termを立ち上げる
 - 1. 「キャンセル」
 - 2. 「設定」
 - 3. 「SSH転送」
 - 4. リモートの(X)アプリケーションを…にチェックが入っ ていなければチェック
 - 5. ファイル→「新しい接続」→ログイン

参考: Unix系システムからの設定手順

- 1. X11が使えるようにする。(普通は何もする必要はない)
- 2. Macでは、OS X 10.7 Lion以降、X11が標準で はなくなったため、XQuartz.appをインストー ルする必要がある。
- 3. ターミナルから以下のコマンドを実行する。

\$ ssh -X my id@pi.ircpi.kobeu.ac.jp

gnuplotの立ち上げ

- 上記の手順でX11アプリケーションの「貼り付け」を許可した上で
- (π-computer上で)gnuplotと打つ。

\$ gnuplot

 以下のコマンドプロンプトが出ればgnuplotの 立ち上げ成功。

gnuplot>

・ここで

gnuplot> plot sin(x)

と入れてみよう。

・以下のようなグラフが表示されれば成功。

gnuplotのヘルプと終了方法

・ヘルプ

gnuplot> help

終了

gnuplot> quit

gnuplotの単項演算子

		単項演算子
記号	例	説明
-	-a	マイナス符号
+	+a	プラス符号 (何もしない)
~	~a	*1の補数 (ビット反転)
!	!a	* 論理的否定
!	a!	* 階乗
\$	\$3	* 'using' 内での引数/列指定

gnuplotの二項演算子

		二項演算子
記号	例	説明
**	a**b	累乗
*	a*b	積
/	a/b	商
%	a%b	* 余り
+	a+b	和
-	a-b	差
==	a==b	等しい
! =	a!=b	等しくない
<	a <b< td=""><td>より小さい</td></b<>	より小さい
<=	a<=b	以下
>	a>b	より大きい
>=	a>=b	以上

gnuplotの二項演算子

&	a&b	* ビット積 (AND)
^	a^b	* ビット排他的論理和 (XOR)
	a b	* ビット和 (OR)
&&	a&&b	* 論理的 AND
	a b	* 論理的 OR
=	a = b	代入
,	(a,b)	累次評価
	A.B	文字列の連結
eq	A eq B	文字列が等しい
ne	A ne B	文字列が等しくない

gnuplotの組み込み関数

	数	学ライブラリ関数
関数	引数	戻り値
abs(x)	任意	<i>x</i> の絶対値, <i>x</i> ; 同じ型
abs(x)	複素数	x の長さ, $\sqrt{\mathrm{real}(x)^2 + \mathrm{imag}(x)^2}$
acos(x)	任意	$\cos^{-1}x(\mathcal{P}-\mathcal{P}\mathcal{I}\mathcal{I}\mathcal{I}\mathcal{I})$
$\operatorname{acosh}(x)$	任意	ラジアンでの $\cosh^{-1}x$ (逆双曲余弦)
arg(x)	複素数	xの偏角
asin(x)	任意	$\sin^{-1}x$ (アークサイン)
$\operatorname{asinh}(\mathbf{x})$	任意	ラジアンでの $\sinh^{-1}x$ (逆双曲正弦)
$\operatorname{atan}(\mathbf{x})$	任意	$ an^{-1}x (\mathcal{P}-\mathcal{P}\mathcal{P}\mathcal{V}\mathcal{V}\mathcal{I}\mathcal{V})$
$\operatorname{atan2}(y,x)$	整数または実数	$ an^{-1}(y/x)$ (アークタンジェント)
$\operatorname{atanh}(\mathbf{x})$	任意	ラジアンでの $ anh^{-1}x$ (逆双曲正接)
EllipticK(k)	実数 k ∈ (-1:1)	K(k) 第 1 種完全楕円積分
EllipticE(k)	実数 k ∈ [-1:1]	E(k) 第 2 種完全楕円積分
EllipticPi(n,k)	実数 n<1, 実数 k ∈ (-1:1)	$\Pi(n,k)$ 第 3 種完全楕円積分

gnuplotの組み込み関数

関数
関数

gnuplotの組み込み関数

int(x)	実数	<i>x</i> の整数部分 (0 に向かって丸め)
lambertw(x)	実数	Lambert W 関数
lgamma(x)	任意	lgamma(real(x)), x の実部のガンマ対数関数
$\log(\mathbf{x})$	任意	$\log_e x, x$ の自然対数 (底 e)
$\log 10(x)$	任意	log ₁₀ x, x の対数 (底 10)
$\operatorname{norm}(\mathbf{x})$	任意	x の実部の正規分布 (ガウス分布) 関数
rand(x)	任意	rand(real(x)), 疑似乱数生成器
real(x)	任意	xの実部
$\operatorname{sgn}(\mathbf{x})$	任意	x > 0 なら 1, x < 0 なら -1, x = 0 なら 0. x の虚部は無視
$\sin(\mathbf{x})$	任意	$\sin x, x \ \mathcal{O} \psi \mathcal{I} \mathcal{V}$
$\sinh(\mathbf{x})$	任意	sinhx, x のハイパボリックサイン
$\operatorname{sqrt}(\mathbf{x})$	任意	\sqrt{x}, x の平方根
$\tan(\mathbf{x})$	任意	tan x, x のタンジェント
tanh(x)	任意	tanhx, x のハイパボリックタンジェント

次のグラフを描け。

$$f(x) = x^x$$

解答

gnuplot> plot x**x title "x¥^x"

カンマで区切る。

gnuplot> plot sin(x), sin(sin(x))

グラフを区別する。

gnuplot> plot sin(x) title "sin(x)", sin(sin(x)) title
"sin(sin(x))"

複数のグラフ

様々なパラメータ

・ setコマンド

gnuplot> set title "y=x^x"
gnuplot> set xlabel "x (no units)"
gnuplot> set ylabel "y (no units)"
gnuplot> plot x**x

様々なパラメータ

・ 定義域と値域

gnuplot> set xrange [0:5]
gnuplot> replot

様々なパラメータ

・グリッド表示

gnuplot> set grid
gnuplot> replot

様々なパラメータ

 ・
 関数の定義

```
gnuplot> s2(x) = sin(sin(x))
gnuplot> s4(x) = s2(s2(x))
gnuplot> s10(x) = s4(s4(s2(x)))
gnuplot> plot s10(x)
```

データのファイルからの読み込み

 gnuplotには、ファイルに書き込まれた離散デ ータを読み込み、それをグラフにする機能が ある。

グレゴリー・ライプニッツ級数

$\pi = 4\left(\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots\right)$

第n項までの級数がどの程度 πに近いかみるプログラム

٠

– leibniz.f95

- 1 4.0000000000000000
- 2 2.6666666666666670
- 3 3.466666666666666
- 4 2.8952380952380956
- 5 3.3396825396825403

準備

・作業ディレクトリの作成

\$ cd ホームディレクトリに移動
\$ mkdir vis01 作業ディレクトリの作成(名前は何でも0K)

\$ cd vis01 作業ディレクトリに移動
\$ cp /tmp/160428/* . サンプルコード(2つ)をコピー

- ・データ作成
 - 1. leibniz.f95をgfortranコンパイラでコンパイルし、 実行せよ。

\$ gfortran leibniz.f95

./a.out
./a.out | head
/a.out > test.data

100行の長い出力 あるいは more/less/tail コマンド

2. ファイルtest.dataの中身を確認せよ。

※エディタで開くよりもmore / less / head / tailコマンドで見る方が早い。

\$ less test.data

#

sample data generated by leibniz.f95
term sum

- 1 4.000000000000000000
- 2 2.6666666666666670
- 3 3.466666666666666
- 4 2.8952380952380956
- 5 3.3396825396825403
- 6 2.9760461760461765
- 7 3.2837384837384844

1次元グラフ

- gnuplotを立ち上げ、コマンドプロンプトに次のコ マンドを入力せよ。

gnuplot> plot 'test.data' w lp

- •w lpは、with linespointsの略記法。
- linespointsは、線(line)と点(point)を表示することを意味する。

• 出力例

gnuplotの入力ファイル

- ・#はコメント開始
- 1行にx,y値のペア
- デフォルトでは第1列がplotのx座標、第2列 がy座標(変更可能)

- ・オプションの変更
 - 1. ラベルの文字を消す。

gnuplot> unset key
gnuplot> replot

2. 縦軸の表示範囲を調整する。

gnuplot> set yrange [3.1:3.2]
gnuplot> replot

3. 図全体のタイトルと、x軸、y軸の説明を入れる。

gnuplot> set title "Leibniz series"
gnuplot> set xlabel "terms"
gnuplot> set ylabel "sum"
gnuplot> replot

• 出力例

gnuplotスクリプト

 gnuplot ではコマンドプロンプトに手で入力す
 る内容をファイルから読み込ませることが出 来る。

- ファイル名: leibnitz.gp(拡張子は任意)

```
#
# leibniz.gp
#
set yrange [3.1:3.2]
set xlabel "terms"
set ylabel "sum"
plot "test.data" w lp
pause -1
```

最後の pause -1 は(一瞬だけ)表示してすぐに終了してしまうのを防ぐため。

スクリプトの実行

gnuplotがまだ立ち上がっていたらquitコマン
 ドで終了し、シェルから以下のコマンドを実行
 せよ。

\$ gnuplot leibnitz.gp

課題

- test.data のデータに重ねて、y=πの直線も 描くような gnuplot スクリプトファイルを作り、 そのファイル名を leibniz2.gp とせよ。
 - ヒント: gnuplot では pi という変数に π が入って
 いる。 定数グラフは plot pi で描ける。
- leibnitz.gpとleibnitz2.gpの差分をメールで提出せよ。

\$ diff leibnitz.gp leibnitz2.gp | mail -s your_account_name
kobeuniv.compra1@gmail.com

締切:次回授業日の前日23:59まで

時間が余った人は...

- ・ leibniz.f95を改訂して200項まで和をとるプロ グラムにせよ。
- そのプログラムを実行し、どの程度πに近づく かgnuplotで見よ。